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Infrared small target detection based on modified local
entropy and EMD
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Image entropy and empirical mode decomposition (EMD) are effective methods for target detection. EMD
algorithm is a powerful tool for adaptive multiscale analysis of nonstationary signals. A new technique
based on EMD and modified local entropy is proposed in small target detection under sea-sky background.
With the EMD algorithm, it is valid to estimate the background and get the target image by removing
the background from the original image and segmenting the target based on the modified local entropy
method. The data analysis and experiments show the validity of the proposed algorithm.
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There are many researches on the detection, iden-
tification, and tracking applications of small targets[1,2].
The main difficulty of small target detection is that there
is no shape, size, texture and other information can be
used. In most cases, the target is supposed either darker
or brighter than its immediate adjacent background, thus
a possibility is provided to detect small infrared target.

Since the concept of information entropy was intro-
duced to image processing, it has aroused broad applica-
tions in image recovery, edge detection, target detection,
image matching, and so on. In the relatively uniform tex-
ture characteristics of the background, it provides a pos-
sible way to detect the target because of the emergence of
the target, damaging the image texture characteristics.
For background images, the entropy should be identified
because its texture characteristics are definitive. When
a target appears in the images, it destructs the charac-
teristics of the image texture, then the entropy changes.
Small target contributes little to the whole image entropy
in the infrared image, and it may be submerged by the
noise, so it offers very little help in detection. But in the
local window, the gray change caused by a small target
may lead to greater local entropy changes, so it is easy
to detect the existence of a small target. The algorithm
based on local entropy[3] may bring the appearance of
target range diffusion and result in false detection. A re-
vised method, entropy rise method, was proposed in Ref.
[4]. Unfortunately, this method is not always accurate.
Therefore, a modified local entropy method is proposed
in this letter.

However, in the complex background of infrared image,
the features of both target and background are generally
nonseparable in the original image space. It is difficult
for traditional detection algorithms to work in the origi-
nal image space, and it is not accurate enough to detect
small targets by relying only on the modified local en-
tropy method proposed here.

In order to overcome these difficulties and improve the
testing results, a novel method to detect small targets
under complex sea-sky background is proposed. The

method is based on the empirical mode decomposition
(EMD) and modified local entropy. EMD algorithm was
initially proposed by Huang et al. in 1998[5]. The al-
gorithm can extract intrinsic mode function (IMF) by
decomposing the local energy associated with the in-
trinsic time scales of the signal itself. So it is adaptive
and can depict the time-frequency characteristics of the
signal. The method proposed in this letter is similar to
wavelet transformation. The process of detecting small
targets may be divided into four steps: firstly, decom-
pose the original image into IMFs based on EMD algo-
rithm; secondly, reconstruct the approximate IMFs into
a background image; thirdly, obtain an image mainly
including target and noise point by using background
image subtracted from the original image; finally, choose
a self-adaptive threshold based on the modified local
entropy to segment the image.

In an infrared image under sea-sky background, due
to the pixel non-uniformity of response of the infrared
image, the atmospheric transmitting and scattering, the
complex background containing large area of cloud and
ocean waves and so on, the background in infrared scene
shows significantly undulant spatial correlation between
each pixel and its surroundings, while in frequency do-
main it lies in low frequency band and belongs to low
frequency interferer for target detection[6,7]. Further-
more, it is important to note that noise comes from the
infrared sensor and the background as well. Because
of the effects of inherent sensor noise and the natural
factors such as weather, wind, sun light, etc., there exist
some high gray regions in the infrared image as compli-
cated cloud edge, irregular sun light spot, etc. All of
these and the targets can be considered as homogeneous
region and fall in high frequency band, belonging to a
high frequency interferer for target detection.

Basis decomposition techniques such as Fourier decom-
position and wavelet decomposition have been used to
analyze real-world signals. The main drawback of these
approaches is that the basic functions are fixed, and do
not necessarily match the varying nature of signals. Re-
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cently EMD method has been proposed as a new tool for
data analysis. It is a signal processing technique partic-
ularly suitable for nonlinear and non stationary series[5].
This technique performs a time-adaptive decomposition
of a complex signal into elementary but almost orthogo-
nal components that do not overlap in frequency.

EMD can break down a signal to a series of zero-mean
functions, i.e., IMFs, which satisfy two conditions. These
two conditions are also the criteria for sifting processes
and for its stopping. There are two steps in each sifting
process: 1) construct upper and lower envelopes by con-
necting all maxima and all minima with cubic splines;
2) subtract the mean of the upper and lower envelopes
from the original signal to get a component. The sifting
process should usually be applied several times because
the components created by only one sifting process can
hardly satisfy all the requirements of an IMF. Once an
IMF is created, the same procedure will then be applied
on the residual of the signal to obtain the next IMF.
The later an IMF is, the lower its frequency will be.
The decomposition will stop when no more IMFs can
be created or the residual is less than a predetermined
small value. While modes and residuals can intuitively
be given a “spectral” interpretation, it is worth stress-
ing the fact that, in general cases, their high-frequency
versus low-frequency discrimination applies only locally
and corresponds by no way to a predetermined subband
filtering (e.g., in a wavelet transform).

As far as the one-dimensional (1D) case is concerned,
studies have been carried out to show the similarities of
EMD with selective filter bank decompositions[8]. Its
efficiency for signal denoising has also been shown[9].
These interesting aspects of the EMD motivate the ex-
tension of this method to two-dimensional (2D) signals.

The basis of 1D EMD is the construction of some IMFs
that are constructed through a sifting process. A 1D sift-
ing process is an iterative procedure depending on the
following four important problems: 1) how to define the
extremal points of signal; 2) the choice of interpolation
method to interpolate those extremal points from the
first step; 3) how to define a stopping criterion that ends
the procedure; 4) the method dealing with boundary
data of the image. The process of 2D EMD is similar to
that of 1D EMD, but for 2D EMD, those four problems
will be more crucial.

For the first problem mentioned above, assuming that
f [m,n] is an M×N image, we use the definition of ex-
treme as follows[10]: f [m,n] is a maximum (minimum)
if it is larger (lower) than the value of f at the eight
nearest neighbors of [m,n].

As far as the interpolation is concerned, several tech-
niques have been proposed, for instance, radial basis
functions such as thin-plate splines. These methods
require the resolution of time-consuming optimization
problems, which makes them hard to exploit, especially
in a noisy context. Since Delaunay triangulation has
good fitting characteristics for scattered or arbitrary
data points, we first dissect the maximum (minimum) of
the image matrix into a series of triangles based on De-
launay triangulation, and then interpolate each triangle
by the piecewise cubic spline to form upper and lower
envelopes of the image.

We adopt a 2D EMD based on Delaunay triangulation

Fig. 1. (a) Original target image; (b)−(e) IMFs; (f) residue
figure.

and a fixed number of iterations to build IMFs. The
above method is similar to the method in Ref. [10]. The
major advantage of the proposed method over existing
ones is that it takes into account the geometry while
preserves a low computational cost.

The boundary handling in 2D EMD is more difficult
than that in 1D EMD, but the general approach applies
only to a certain type of one or more of the borders. In
addition, there is no theoretical proof to testify which
approach is better. In this letter, we deal with boundary
issue based on the mirror reflection of image data.

Though the method based on EMD is similar to wavelet
transformation, it can decompose the image into some
IMFs and the residue, in other words, it can decompose
the image into different frequencies, with the first IMF
denoting the highest frequency, the second IMF denot-
ing the second highest frequency, and so on. We want to
extract the target from the infrared image under sea-sky
background shown in Fig. 1(a) according to our method.
Figures 1(b)−(e) show four IMFs, and Fig. 1(f) depicts
the decomposition residue. Figure 1(f) contains the in-
formation background naturally, and thus it can be used
as the estimation of the background.

Target detection algorithms have been steadily improv-
ing, whereas many of them fail to work robustly during
the applications involving changing backgrounds that are
frequently encountered.

Let F=[f(x,y)]M×N be an image of size M×N,
where f(x, y) is the gray value at (x, y);
f(x, y)∈GL={0, 1,· · ·,L−1}, GL is the set of gray lev-
els. The definition of entropy is described as





Hf = −
M∑
i=1

N∑
j=1

pij log pij

pij = f (i, j)

/
M∑
i=1

N∑
j=1

f (i, j),
(1)

where Hf is the image entropy and pij is the gray distri-
bution. Assumed that M×N is the size of a local window
of image, Hf is then called the local entropy of image.

When an infrared small target is detected based on lo-
cal entropy[3], the calculation of the entropy is simplified
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as

H ≈ −
M∑

i=1

N∑

j=1

pij (pij − 1) = 1−
∑

(i,j)∈(M,N)

p2
ij . (2)

For further simplification, we assume that[4]

Hf = 1−H =
∑

(i,j)∈(M,N)

p2
ij . (3)

In the relatively homogeneous gray-scale spaces, Hf has
a less value; in the large discrete areas, it has a greater
value. Its value, although reflecting the degree of dis-
persion of the image grey, is exactly the opposite of the
“entropy” original nature. In order to facilitate the ex-
pression, it is still called “local entropy”.

It has been denoted that the algorithm proposed in
Ref. [3] may lead to target range diffusion and false
detection[4]. So a resoluble algorithm is put forward
which is called the entropy rise method.

We suppose that the target is in position 0 and the
background is uniform (Fig. 2(a)), and H9 denotes the lo-
cal entropy of a 3×3 small neighborhood (a 9-pixel point)
as described in Eq. (1) within the image. If the center
point is removed, a new local map (an 8-pixel point) is
formed with the neighborhood points (Fig. 2(a), posi-
tions 1−8). A new local entropy is calculated as described
in Eq. (1) and denoted as H8. Then a new local entropy
is defined as

Hz = H9 −H8. (4)

Hz was the growth scope of local entropy, and it might
be referred to as “entropy rise”.

Assumed that there is no target in the uniform back-
ground, H9 is equal approximately to H8, in other words,
Hz is approximately 0. But if a target is located in the
center point, owing to the appearance of the target, the
dispersion of 3×3 scope will increase and be removed
from the center point, and the dispersion reduces. So a
conclusion can be drawn that there exists a target if Hz

is not equal to 0[4].
The entropy rise method in Ref. [4] seems somewhat

true, but in the following sample, it may lead to an in-
appropriate conclusion. In Fig. 2, if we appoint 4 to the
gray value of position 0, and 2 to the other positions
(Fig. 2(b)), we can say that the position 0 is the point
of target out of question. We can compute H9, H8, and
Hz according to Ref. [4] (see Table 1), but if we appoint
2 to the gray value of all positions (Fig. 2(c)), we will
find that there is no target in the local window. We
can also compute H∗

9 , H∗
8 , and H∗

z according to Ref. [4]
(see Table 1). In Table 1, we modify Hz as its absolute
value. It can be seen that the value of Hz in Fig. 2(b)
is smaller than that in Fig. 2(c). However, there exists
a target in Fig. 2(b), not in Fig. 2(c), so the method in
Ref. [4] is not accurate to some degree. Someone may
say that the revised expression of “entropy rise” causes
the inaccuracy. Now if we appoint 0 to the grey value of
position 0, and 2 to the other positions (Fig. 2(d)),we
will find that there exists a darker target in the image,
but the value of Hz is 0 and there seems to be no target
in the image according to Ref. [4].

Fig. 2. A target point and its neighborhood points.

Table 1. Values of Entropy for Figs. 2(b)−(d)

H9 H8 Hz

Fig. 2(b) 0.120 0.125 0.005

Fig. 2(c) 0.111 0.125 0.014

Fig. 2(d) 0.125 0.125 0

The same conclusion can be drawn from Figs. 3−7.
We assume that I(m,n) is an image and the size of it
is 12×12, (m,n) denotes the coordinates of the image
points. Similarly, assume that the value of I(6,6) is 4
and others is 2. Figure 3 is an original image and Fig. 4
is the result by the method of Ref. [3]. We can find it
causes target range diffusing and the algorithm may re-
sult in false detection. Figure 5 is the result based on the
definition of “entropy rise” in Ref. [4]. Here, we modify
the expression of the absolute value instead of Hz be-
cause “entropy rise” reflects the varying scope of local
entropy. We can see from Fig. 5 that the target appears
in the position of minimum Hz, not maximum Hz. A
method of normalization was introduced to modify the
inappropriate aspect[4]:

∧
H = H/log(n + 1), (5)

∧
Hf =

[
Hf − 1/(n + 1)

]
× n + 1

n

=
(n + 1)Hf − 1

n
. (6)

The normalization method may eliminate the effect
of the number of elements of local window. Figure 6 is
the result which is not very obvious since it can detect
the position of the target. According to the definition

of
∧
H and

∧
Hf , we find that both H and Hf represent

local entropy, and the difference between them is their
number of elements.

From Eq. (3), we find that Hf is a linear combina-
tion with p2

ij . The weight coefficient is equal to 1. It
actuates us to rewrite the equation again and revise the
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Fig. 3. Original image.

Fig. 4. Result according to Ref. [3].

Fig. 5. Result without normalization according to Ref. [3].

Fig. 6. Result with normalization according to Ref. [3].

weight coefficient. Now we take a new weight coefficient
α in the center point:

Hf =
∑

(i,j)∈(M,N)

p2
ij =

∑

i 6=j

p2
ij + αp2

ii . (7)

The coefficient α can be adjusted in the experiments.

Fig. 7. Result according to modified local entropy.

Fig. 8. Small target detection experiment of infrared image
under sea-sky background. (a) Original infrared image under
uniform background; (b) detecting result based on the mod-
ified local entropy; (c) 3D image of the modified local entropy.

Fig. 9. Original infrared images under sea-sky background.

In our experiments, α > 1 if the intensity of target is
greater than others, and α < 1 contrarily. Now we call
Hf as the modified local entropy. It cannot only over-
come the appearance of target range diffusion, but also
avoid some inaccurate conclusions as Ref. [4]. The same
conclusion can also be deduced in Fig. 7. From Fig. 7,
it can be seen that the position of target is successfully
detected and the result is more obvious than the result
in Fig. 6.

We performed experiments to further describe the
modified local entropy method. Figure 8 is the ex-
perimental result of small infrared target under uniform
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Fig. 10. Target detection results of the continuous frames
based on EMD and modified local entropy corresponding to
Figs. 9(a)−(c).

background, where the size of the original image is
128×128, the window of modified local entropy is 3×3.
From Fig. 8, the entropy of background texture is rel-
atively uniform, but in the target scope, it is obviously
increscent. So the small target is segmented feasibly by
the modified entropy proposed in this letter.

The small target detection is very difficult under the
complicated background of infrared image. The general
method is suppressing the background of the image and
segmenting the target using the threshold. The algorithm
based on EMD can decompose the image into different
IMFs and the residue, which may be looked as the ap-
proximation to the background of the image. Therefore,
if the background is subtracted from the original image,
it can attain the goal to suppress the background. A re-
sult will increase the signal-to-noise ratio (SNR) of the
image. It provides a possible way to detect the small tar-
get based on the modified local entropy method.

To test the pros and cons of EMD and modified local
entropy algorithm in small target detection under com-
plex background of infrared images, we have done a large
number of computer simulations. All of those images
are under complex sea-sky background, and the SNRs
are very low. The experimental procedures are as fol-
lows: firstly, suppress the background of the infrared
image based on EMD method; secondly, segment the
target using a threshold based on the modified entropy
method. Serial pictures of 96 frames have been done
based on the proposed method, and the size each pic-
ture is 128×128. Figure 9 shows three continuous frames
with small targets for detection, and Fig. 10 shows the
detection results. Through an analysis of the results
from Fig. 10, we can conclude that the EMD method
really adapts to detect small targets under complex sea-

sky background, the proposed algorithm can detect small
infrared targets by suppressing the image background
based on EMD method and lead to the self-adaptable
segmentation threshold based on the modified local en-
tropy.

In conclusion, a new algorithm is put forward for de-
tecting small target under complex background of in-
frared image based on EMD and modified local en-
tropy. Based on the experimental results, this method
can effectively and quickly identify small infrared targets.
EMD method is based on the data itself, and therefore it
has a good adaptability. The modified local entropy re-
flects the degree of changes in the intensity of gray level.
The initial results are very encouraging and promising.
In a word, this new method would really help to isolate
noise from airborne gravity data and detect meaningful
geological information that might have been masked by
noises.
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